Consistent Standard Errors in Panel Tobit with Autocorrelation

نویسندگان

  • Meghan R. Busse
  • Andrew B. Bernard
چکیده

This paper derives consistent standard errors for a panel Tobit model in the presence of correlated errors. The problem is framed in the context of Newey and West (1987), considering the Tobit model as a special case of a GMM estimator. JEL codes: C23, C24

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heteroskedasticity, Autocorrelation, and Spatial Correlation Robust Inference in Linear Panel Models with Fixed-E¤ects

This paper develops an asymptotic theory for test statistics in linear panel models that are robust to heteroskedasticity, autocorrelation and/or spatial correlation. Two classes of standard errors are analyzed. Both are based on nonparametric heteroskedasticity autocorrelation (HAC) covariance matrix estimators. The …rst class is based on averages of HAC estimates across individuals in the cro...

متن کامل

Recentered and Rescaled Instrumental Variable Estimation of Tobit and Probit Models with Errors in Variables

Since Durbin (1954) and Sargan (1958), instrumental variable (IV) method has long been one of the most popular procedures among economists and other social scientists to handle linear models with errors-in-variables. A direct application of this method to nonlinear errors-in-variables models, however, fails to yield consistent estimators. This article restricts attention to Tobit and Probit mod...

متن کامل

Heteroskedasticity-Robust Standard Errors for Fixed Effects Panel Data Regression

The conventional heteroskedasticity-robust (HR) variance matrix estimator for cross-sectional regression (with or without a degrees-of-freedom adjustment), applied to the fixed-effects estimator for panel data with serially uncorrelated errors, is inconsistent if the number of time periods T is fixed (and greater than 2) as the number of entities n increases. We provide a bias-adjusted HR estim...

متن کامل

Model Checking in Tobit Regression Model via Nonparametric Smoothing

A nonparametric lack-of-fit test is proposed to check the adequacy of the presumed parametric form for the regression function in Tobit regression models by applying Zheng’s device with weighted residuals. It is shown that testing the null hypothesis for the standard Tobit regression models is equivalent to test a new null hypothesis of the classic regression models. An optimal weight function ...

متن کامل

A Lack-of-Fit Test in Tobit Errors-in-Variables Regression Models

The problem of fitting a parametric model in Tobit errors-in-variables regression models is discussed in this paper. The proposed test is based on the supremum of the Khamaladze type transformation of a certain partial sum process of calibrated residuals. This framework covers the usual error-free Tobit model as a special case. The asymptotic null distribution of this transformed process is sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002